# VII. Chassigny

Dunite, ~4 kg. seen to fall

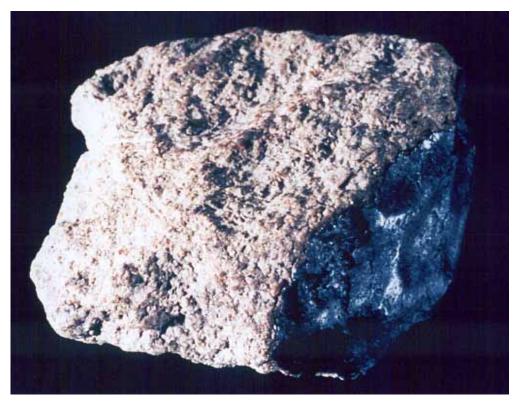



Figure VII-1. The Chassigny meteorite at the Paris Museum National d'Histoire Naturelle. Piece weighs 215 grams. Photo kindly provided by Claude Perron.

#### Introduction

On October 3, 1815, at about 8:00 a.m., a stone, or perhaps several, fell after detonations near the village of Chassigny on the plateau of Langres in the province of Haute-Marne, France (Pistollet, 1816; Graham *et al.*, 1985) (figure VII-1). The possible significance of the coincidence of the fall day with that of Zagami has been discussed by Treiman (1992).

Chassigny contains mostly olivine and is thus classified as a dunite. Because of its young age, similar oxygen isotopes and REE pattern, this meteorite has been grouped with the nakhlites and the rest of the Martian meteorites. It also has a similar <sup>142</sup>Nd anomaly to that of the nakhlites.

Chassigny is important because it is found to contain noble gasses that are entirely different from those in EETA79001 glass and the Martian atmosphere (Ott, 1988, Ott and Begemann, 1985). Presumably this raregas component is from the Martian mantle (see section on Other Isotopes).

Although Brachina was originally classified as a chassignite, Nehru *et al.* (1983) and Clayton and Mayeda (1983) showed that the brachinites are a different class of meteorites.

## **Petrography**

Chassigny is a dunite with rare poikilitic, Ca-rich, pyroxenes containing lamellae of exsolved Ca-poor pyroxene (Johnson *et al.*, 1991) (figure VII-2). The olivine (Fo<sub>68</sub>) often has melt inclusions (Floran *et al.*, 1978, Mason *et al.*, 1975). Prinz *et al.* (1974) gives the mode as 91.6 % olivine, 5 % pyroxene, 1.7 % plagioclase, 1.4 % chromite, and 0.3 % melt inclusions. Floran *et al.* (1978) reported minor alkali feldspar,

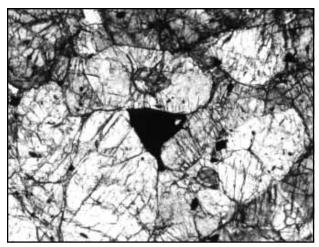



Figure VII-2. Photomicrograph of thin section of Chassigny. Field of view 2.2 mm. Section #624-4 loaned by Smithsonian. Note melt inclusion in olivine and large chromite grain.

chlorapatite, marcasite, pentlandite, troilite (?), ilmenite, rutile and baddeleyite as accessory minerals. Wadhwa and Crozaz (1995) reported poikilitic pigeonite in Chassigny and determined the trace element compositions of the phases.

Igneous chromite contains substantial Fe<sup>+3</sup> (Floran *et al.* 1978) proving crystallization under oxidizing conditions.

Interstitial feldspar, with a range of composition from sanidine to labradorite was a late phase to crystallize.

Magmatic melt inclusions found in olivine range in size from the optical limit up to 190 microns (figure VII-2). These inclusions are found to include hydrous kaersutitic amphibole (Floran *et al.*, 1978), high and low-Ca pyroxene, chlorapatite, troilite, chromite, pentlandite and alkali feldspar-rich glass.

Shock features were studied by Sclar and Morzenti (1971) and Floran *et al.* (1978) who reported planar features in olivine.

## **Mineral Chemistry**

*Olivine*: Olivine is Fo<sub>68</sub>, which is relatively iron-rich for a cumulate (Prinz *et al.*, 1974). Olivine appears to be in equilibrium with pyroxene. Smith *et al.* (1983) carefully determined Ni, Ca, Mn, Cr and other minor elements in olivine. The relatively high CaO (0.17-0.26%) reported by Smith *et al.* seems to indicate that this rock did not form in a "plutonic" environment.

Nakamura *et al.* (1982c) determined trace elements in mineral separates including an olivine separate (figure VII-3).

**Chromite:** Tschermak (1885) reported distinct octahedrons of chromite. According to Floran *et al.* (1978), chromite was the first phase to crystallize (it is found as inclusions in olivine) and continued throughout the crystallization sequence. Floran *et al.* made the important observation that this chromite contained substantial  $Fe^{+3}$ .

*Pyroxene*: Poikilitic pyroxene grains consist of a Carich host (Wo<sub>3</sub>En<sub>49</sub>Fs<sub>17</sub>) with exsolved Ca-poor (Wo<sub>3</sub>En<sub>68</sub>Fs<sub>28</sub>) as thin lamellae on the (011) plane. Pyroxene is unzoned and appears to be in equilibrium with the olivine (figure VII-4). Virtually all pyroxene in one thin section occurs as a single poikilitic grain 6.4 mm in length (Floran *et al.*, 1978). However, Harvey and McSween (1994) have reported cumulate orthopyroxene in Chassigny and Wadhwa and Crozaz (1995) reported poikilitic pigeonite. Floran *et al.* (1978) reported trace element analyses for pyroxenes and these are compared with those of other Martian meteorites in figure 3 of Smith *et al.* (1983).

**Plagioclase:** Mason *et al.* (1975) determined the plagioclase composition to be  $An_{32}Ab_{64}Or_4$ . Floran *et al.* reported  $An_{32}Ab_{64,3}Or_{3,7}$ .

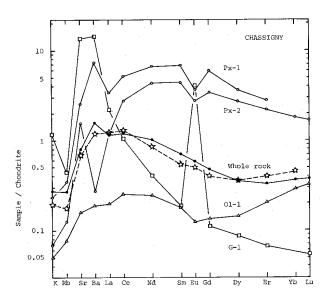



Figure VII-3. Composition diagram for mineral separates and whole rock samples of Chassigny meteorite. This is figure 1 in Nakamura et al. (1982b). The dashed line is data for bulk rock from Mason et al. (1976).

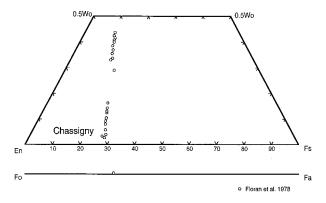



Figure VII-4. Pyroxene composition diagram for Chassigny. Data replotted from Floran et al. (1978).

**Potassium feldspar:** Interstitial potassium feldspar is found as 100-300 micron grains  $Or_{47,2}Ab_{47,8}An_{50}$ .

**Biotite:** Johnson *et al.* (1991) discovered biotite in Chassigny and found that it contained 2.3 % F and 0.4 % Cl. Watson *et al.* (1994) found 0.5 wt % H<sub>2</sub>O in the biotite with heavy D/H.

*Kaersutite (Ti-rich amphibole):* Floran *et al.* (1978) reported pleochroic amphibole (up to 75 microns) as a "conspicuous constituent" of the larger melt inclusions. Floran *et al.* reported H by ion microprobe. Johnson *et al.* (1991) reported that kaersutite contained 0.5 % F and 0.1 % Cl. Watson *et al.* (1994) determined the D/H ratio and water content of kaersutite grains in Chassigny by ion probe.

**Baddeleyite:** Floran *et al.* (1978) report the composition of a baddeleyite grain found adjacent to rutile.

**Apatite:** The apatite in Chassigny contains 3.6 % Cl (Floran *et al.* ). Wadhwa and Crozaz (1995) determined the REE content of chlorapatite.

*Sulfides*: Analyses of three different sulfides (troilite, marcasite, pentlandite) have been reported by Floran *et al.* (1978). One grain of pentlandite was found to contain 13 % Cu.

## **Whole-rock Composition**

Early analyses were performed by Vauquelin (1816) and Damour (1862). Prinz *et al.* (1974) noted that Chassigny is iron-rich for a cumulate dunite. Mason *et al.* (1975), Boynton *et al.* (1976), and Burghele *et al.* (1983) reported complete analyses (table VII-1)(figure VII-5). Nakamura *et al.* (1982c) reported

REE for 'whole rock' and 'mineral' separates (figure VII-3) and confirmed the data of Mason *et al.* for the bulk sample.

Chassigny has relatively high Ni (400 ppm), Co (120 ppm), Ir (~2 ppb) and Os (1.8 ppb) (table VII-1). In addition to the data table, Curtis *et al.* (1980) determined 6.3 ppm B for Chassigny. Gibson *et al.* (1985) determined 360, 440, 300, 330 ppm S on different splits. Burgess *et al.* (1989) studied the temperature release of S.

Karlsson et al. (1992) found 1020 ppm H<sub>2</sub>O.

## **Radiogenic Isotopes**

Lancet and Lancet (1971) reported a K-Ar age for Chassigny of  $1.39 \pm 0.17$  Ga. Bogard and Nyquist (1979) produced a  $^{39}$ Ar/ $^{40}$ Ar age of 1.2 - 1.4 Ga. Jagoutz (1996) determined an age of  $1.362 \pm 0.062$  Ga by Sm-Nd (figure VII-6).

## **Cosmogenic Isotopes and Exposure Ages**

Lancet and Lancet (1971) reported cosmic-ray exposure ages of  $9.4 \pm 0.3$  Ma for  ${}^{3}$ He,  $7.6 \pm 0.2$  Ma for  ${}^{2}$ Ne and  $6.7 \pm 0.6$  for  ${}^{3}$ Ar. Bogard *et al.* (1984b) calculated an exposure age of about 10 Ma. Using new production rates, Bogard (1995) calculated 12 Ma from  ${}^{2}$ Ne data and 10 Ma from  ${}^{3}$ Ar data for Chassigny.

## **Other Isotopes**

Clayton and Mayeda (1983, 1996) reported the oxygen isotopes for Chassigny (figure I-2). Karlsson *et al.* (1992) found that the oxygen isotopes in water released from Chassigny was enriched in <sup>17</sup>O, indicating that the past hydrosphere on Mars was from a different

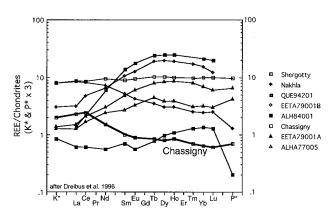



Figure VII-5. Chondrite normalized REE diagram for Martian meteorites including Chassigny (after Dreibus et al., 1996).

 Table VII-1.
 Chemical analyses of Chassigny.

| Lancet 71                          | 0.054 (j)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Warren87</b> <i>ave.</i>        | 37.44<br>0.64<br>27.27<br>0.88<br>31.83<br>0.125<br>5.9<br>42<br>5.9<br>42<br>5.00<br>123<br>452<br>77<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.53<br>0.137<br>0.045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| S Nakamura<br>see figure           | ore 188 me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.6 (i) 0.133 (i) 0.045 (i) 0.045 (i) 0.045 (i) 0.013 (i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mason 75                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.2 (f) (1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Jerome 70                          | 5.58 (d)<br>4790 (d)<br>140.6 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>D'yako-60 Boynton 76</b> .458 g | 0.15 (d) 0.64 (d) 0.65 (d) 0.65 (d) 0.71 (d) 30.2 (d) 0.114 (d) 0.038 (d) 3.763 (d) 3.763 (d) 3.763 (d) 4.8 (d) 4.00 (d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.6 (e)<br>0.14 (e)<br>0.045 (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D'yako- 60                         | 37.44<br>0.08<br>1.07<br>26.55<br>0.74<br>0.52<br>32.17<br>1.09<br>0.07<br>0.07<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Jeremine 62                        | 36.79 n.d. 1.17 27.58 0.05 0.06 0.11 98.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| McCarthy 74                        | 37.01 © 0.07 © 0.036 © 0.36 © 0.36 © 0.53 © 0.15 © 0.04 © 0.03 © 0.04 © 0.04 © 0.04 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 © 0.09 ©  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Jerome 70                          | 37.3 (a) 0.47 (a) 26.78 (a) 0.55 (a) 0.55 (a) 0.75 (a) 32.7 (a) 0.13 (a) 0.04 (a) 98.72  98.72  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.75  98.7 | \$\langle \text{0.1} \\ \text{0.1} \\ \text{0.1} \\ \text{0.2} \\ 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Burghele 83                        | 38.16 (de) 0.0.1 (de) 0.69 (de) 27.1 (de) 0.526 (de) 0.6 (de) 0.6 (de) 0.138 (de) 0.041 (de) 0.041 (de) 0.049 (de) 11.3 (de) 11.3 (de) 11.3 (de) 11.4 (de) 11.5 (de) 11.6 (de)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <0.01 (d.e) 0.59 (d.e) 0.7 (d.e) 0.16 (d.e) 0.52 (d.e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Treiman 86</b> 0.1-0.2 g        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| weight                             | Si S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Kb<br>Zr<br>Zr<br>Zr<br>Mo<br>Mo<br>Mo<br>Mo<br>Pd ppb<br>Cd ppb<br>In ppb<br>In ppb<br>In ppb<br>In ppb<br>Ca ppb<br>In ppb<br>In ppb<br>In ppb<br>Ca ppb<br>In ppb<br>In ppb<br>Ca ppb<br>In ppb<br>In ppb<br>Ca ppb<br>In ppb<br>In ppb<br>In ppb<br>Ca ppb<br>In ppb<br>In ppb<br>Ca ppb<br>In ppb<br>In ppb<br>In ppb<br>In ppb<br>In ppb<br>Ca ppb<br>In ppb |

| Th         0.1-0.2 g         **eeffgure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | Treiman 86 | Treiman 86 Burghele 83 Jerome 70 McCarthy 74 | Jerome 70 | McCarthy 74 | Jeremine 62 | D'yako-60 | Jeremine 62 D'yako- 60 Boynton 76 Jerome 70 Mason 75 Nakamura Warren 87 | Jerome 70 | Mason 75  | Nakamura   | Warren87 | Lancet 71 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|----------------------------------------------|-----------|-------------|-------------|-----------|-------------------------------------------------------------------------|-----------|-----------|------------|----------|-----------|
| 0.054 (de) 0.07 (de) 0.07 (de) 0.07 (de) 0.08 (de) 0.012 (de) 0.018 (de) 0.01 | weight | 0.1-0.2 g  |                                              |           | 2.1 g       |             |           | .458 g                                                                  |           |           | see figure | аче.     |           |
| 0.027 (d,e) 0.058 (d,e) 0.058 (d,e) 0.058 (d,e) 0.058 (d,e) 0.012 (d,e) 0.013 (d,e) 0.013 (d,e) 0.013 (d,e) 0.014 (e) 0.015 (f) 0.015 (e) 0.015 (f) 0.015 (f | TP TP  |            | 0.04 (d.e)                                   |           |             |             |           |                                                                         |           |           |            |          |           |
| 0.058 (de) 0.0058 (de) 0.01 (de) 0.01 (de) 0.013 (de) 0.013 (de) 0.013 (de) 0.013 (de) 0.013 (de) 0.014 (de) 0.015 (e) 0.015 ( | Δ      |            | 0.27 (d,e)                                   |           |             |             |           |                                                                         |           |           | 0.11 (i)   |          |           |
| 0.12 (d,e) 0.018 (d,e) 0.013 (i) 0.014 (e) 0.015 (d,e) 0.015 (d,e) 0.016 (d,e) 0.017 (f) 0.014 (e) 0.018 (d,e) 0.017 (f) 0.018 (d,e) 0.018 (d,e) 0.019 (f) 0.010 (f) 0.019 (f) 0.011 (f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Но     |            | 0.058 (d,e)                                  |           |             |             |           |                                                                         |           |           |            |          |           |
| 0.12 (d,e) 0.018 (d,e) 0.019 (e) 0.012 (e) 0.013 (i) 0.014 (e) 0.014 (e) 0.015 (f) 0.015 (f) 0.017 (f) 0.018 (d,e) 0.017 (f) 0.018 (d,e) 0.018 (d,e) 0.018 (d,e) 0.019 (d,e) 0.011 (f) 0.011 (f) 0.011 (f) 0.011 (f) 0.011 (f) 0.011 (f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ΞĪ     |            |                                              |           |             |             |           |                                                                         |           |           |            |          |           |
| 0.12 (d,e) 0.12 (d,e) 0.11 (e) 0.11 (f) 0.08 (f) 0.018 (d,e) 0.018 (d,e) 0.018 (d,e) 0.018 (d,e) 0.018 (d,e) 0.013 (f) 0.013 (f) 0.013 (f) 0.013 (f) 0.013 (f) 0.018 (d,e) 0.014 (e) 0.014 | Tm     |            |                                              |           |             |             |           |                                                                         |           |           |            |          |           |
| 0.018 (d.e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yb     |            | 0.12 (d,e)                                   |           |             |             |           | 0.1 (e)                                                                 |           |           | 0.08 (i)   | 0.107    |           |
| <0.1 (d,e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lu     |            | 0.018 (d,e)                                  |           |             |             |           | 0.012 (e)                                                               |           |           | 0.013 (i)  | 0.015    |           |
| <0.002 (d,e)       Birk 94       Birk 94         0.054 (e)       6 (d,e)       0.0711         1.36 (e)       1.796       6 (d)         1.85 (e)       1 (d,e)       6 (d)         0.56 (e)       1 (d,e)       6 (d)         3.7 (e)       6 (d)         0.37 (e)       6 (d)         0.0149(e)       6.1 "(d,e)"       0.057 (f)         0.0149(e)       6.1 "(d,e)"       0.021 (f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 王      |            | <0.1 (d,e)                                   |           |             |             |           |                                                                         |           |           |            |          |           |
| 46 (d,e)     Birk 94       0.054 (e)     0.0711       1.36 (e)     1.796       1.85 (e)     2.4 (d,e)       0.56 (e)     1 (d,e)       3.7 (e)     6 (d)       0.37 (e)     6 (d)       0.0149(e)     <0.1 "(d,e)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Та     |            | <0.02 (d,e)                                  |           |             |             |           |                                                                         |           |           |            |          |           |
| 0.054 (e) 0.0711<br>1.36 (e) 1.796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | W ppb  |            | 46 (d,e)                                     |           | Birk 94     |             |           |                                                                         |           |           |            |          |           |
| 1.36 (e) 1.37 (e) 1.37 (c) 1.37 (c) 1.39 (e) 1.4 (d,e) 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 1.796 | Re ppp | 0.054 (e)  |                                              |           | 0.0711      |             |           |                                                                         |           |           |            |          |           |
| 1.85 (e)     2.4 (d,e)     6 (d)       0.56 (e)     1 (d,e)     6 (d)       3.7 (e)     6 (d)       0.37 (e)     6 (d)       0.0149(e)     <0.1 "(d,e)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Os ppb | 1.36 (e)   |                                              |           | 1.796       |             |           |                                                                         |           |           |            | 1.4      |           |
| 0.56 (e)     1 (d,e)     6 (d)       3.7 (e)     0.37 (e)     0.057 (f)       0.0149(e)     <0.1 "(d,e)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ir ppb | 1.85 (e)   |                                              |           |             |             |           |                                                                         |           |           |            | 2.1      |           |
| 3.7 (e) $0.37$ (c) $<0.2$ (d,e) $0.0149(e)$ $<0.1$ "(d,e)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Au ppb | 0.56 (e)   |                                              |           |             |             |           |                                                                         |           |           |            | 0.8      |           |
| 0.37 (e) $<0.2$ (d,e) $0.0149(e)$ $<0.1$ "(d,e)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TI ppb | 3.7 (e)    |                                              |           |             |             |           |                                                                         |           |           |            |          |           |
| <0.2 (d,e)<br>0.0149(e) <0.1 "(d,e)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bi ppb | 0.37 (e)   |                                              |           |             |             |           |                                                                         |           |           |            |          |           |
| 0.0149(e) <0.1 "(d.e)"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Th ppm |            | <0.2 (d,e)                                   |           |             |             |           |                                                                         |           | 0.057 (f) |            |          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U ppm  | 0.0149(e)  | <0.1 "(d,e)"                                 |           |             |             |           |                                                                         |           | 0.021 (f) |            |          |           |

ı

echnique: a) semi-micro wet chem., b) emission spec., c) XRF d) INAA, e) RNAA, f) spark source Mass spec., (h) B = 6.3 ppm, Curits 1980; (i) calculated from figure I; (j) radiation counting

Ī

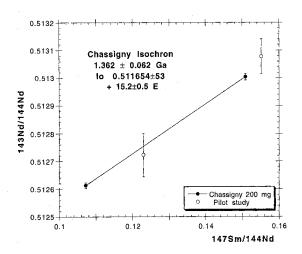



Figure VII-6. Sm-Nd isochron diagram for Chassigny from Jagoutz (1996), LPS XXVII, page 598.

reservoir than the lithosphere. Romanek *et al.* (1996) reported additional data for oxygen isotopes in Chassigny using a newly developed laser-fluoridation technique.

Watson *et al.* (1994) reported the deuterium contents of hydrous amphiboles and one biotite in Chassigny. However, Leshin *et al.* (1996) found that the  $\delta D$  for water released from bulk samples of Chassigny was "*indistinguishable from typical terrestrial values*" (figure VII-7).

Jagoutz (1996) has reported a large <sup>142</sup>Nd/<sup>144</sup>Nd anomaly in Chassigny, which implies that the reservoir from which Chassigny was formed was depleted in light REE as early as 4.5 Ga (see also Harper *et al.*, 1995).

Birk and Allègre (1994) have studied the Re-Os isotopic systematics of Chassigny. The Os isotopic composition was found to be chondritic.

The carbon and nitrogen content and isotopic composition has been reported by Wright et al. (1992).

Chassigny contains trapped noble gases with isotopic ratios similar to solar abundances (Ott, 1988). It seems to lack the noble gas component of the current Martian atmosphere (figure VII-8).

## **Extra-terrestrial Weathering**

Wentworth and Gooding (1994) reported trace amounts of Ca-carbonate, Ca-sulfate and Mg-carbonate in cracks inside Chassigny. They emphasize "that water-precipitated salts in Chassigny comprise unmistakable

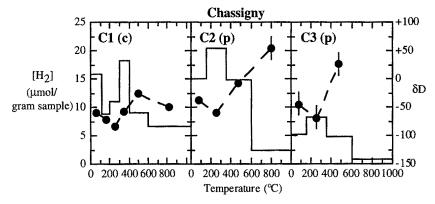



Figure VII-7. Hydrogen isotope composition of water released by stepwise heating of Chassigny meteorite. This is a copy of figure 4 in Leshin et al. (1996), GCA 60, 2641.

physical evidence for the invasion of Chassigny by aqueous fluids". However, the isotopic data for hydrogen is terrestrial, possibly due to isotopic exchange (see above).

## **Processing**

Although this meteorite apparently originally weighed ~4 kg., only a small amount of this unique rock is apparently available for research today (table I-3). The distribution of samples is given in figure VII-9. A dunite might be expected to have slightly different lithology in different places and each piece should be examined.

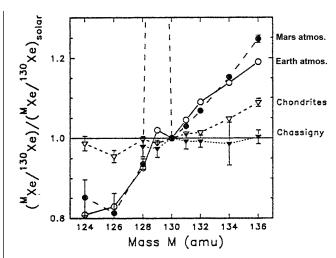



Figure VII-8. Normalized isotopic composition of Xe for Martian atmosphere trapped in EETA79001 compared with data for Chassigny. This is figure 3 in Swindle (1995), AIP 341, page 175.

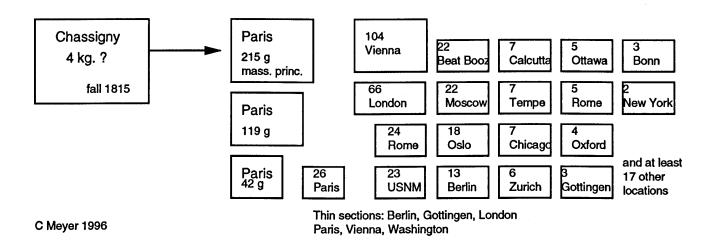



Figure VII-9. World location for remaining pieces of Chassigny meteorite.